Login to your account

Username *
Password *
Remember Me

Create an account

Fields marked with an asterisk (*) are required.
Name *
Username *
Password *
Verify password *
Email *
Verify email *
Captcha *
Reload Captcha
Domenica, 16 Dicembre 2018

Sono già passati tre mesi da quando le agenzie di stampa hanno lanciato la notizia: un team di ricercatori coordinato da Federico Cremisi, del Laboratorio di Biologia della Scuola Normale Superiore di Pisa, coadiuvato da Matteo Caleo, dell'Istituto di Neuroscienze del Consiglio Nazionale delle Ricerche, è riuscito a trasformare cellule staminali in neuroni che, trapiantate nel cervello di topi vivi, hanno dimostrato di sviluppare connessioni, funzionando come i neuroni naturali. Il risultato, pubblicato sulla rivista Stem Cell Reports, potrebbe aprire la strada a future terapie per riparare i danni cerebrali.

Il dottor Cremisi ha gentilmente accettato di rispondere a qualche nostra domanda   

- Da quanti anni fa ricerca?

Faccio ricerca da 30 anni, ho iniziato a fare attività sperimentale nel campo della biologia molecolare durante il corso di dottorato in biologia evoluzionistica e del differenziamento presso l’Università di Napoli Federico II.

- In cosa consiste il suo filone di ricerca?

Da molti anni mi occupo dei meccanismi che creano la diversità cellulare: vale a dire come da una cellula uovo e dai primi tessuti embrionali possano originare tutti i tipi di cellule specializzate che compongono i nostri tessuti ed organi adulti, ad esempio le cellule del sangue, le cellule muscolari, quelle della pelle, e così via. Io mi occupo dei diversi tipi di cellule nervose: fra tutti i tipi diversi di cellule quelle nervose mostrano la maggiore diversità. Esistono migliaia di diversi tipi di neuroni nelle diverse regioni del cervello e capire i segnali che ne indirizzano il destino rappresenta una delle sfide più grandi per i biologi che, come me, studiano lo sviluppo dell’embrione.

- Ha iniziato subito con la ricerca in questo campo o si è avvicinato dopo aver esplorato altri settori di ricerca?

In realtà non ho iniziato come biologo dello sviluppo ma come biologo molecolare. In Italia sono stato fra i primi giovani studenti a ricombinare e clonare il DNA. Col tempo ho capito che studiare le molecole biologiche senza studiarne la funzione non mi interessava. Adesso mi considero più un biologo cellulare che un biologo molecolare. Cerco di capire come le molecole modificano le cellule e con esse le funzioni biologiche.

- Perché conviene puntare sulla produzione di cellule nervose specializzate e non generiche?

Il sistema nervoso funziona in virtù di connessioni giuste fra cellule diverse. Ci sono migliaia di diversi tipi di cellule nervose in centinaia di regioni encefaliche diverse ed ognuna di queste cellule contatta ed è contattata da altre cellule, ben precise. Il cervello si basa su questo tipo di rete complessa. Pretendere che una cellula generica impiantata in una data regione del cervello possa funzionar bene è come collegare un computer ad una stampante con il cavo del monitor e aspettarsi che stampi. Non credo a questo approccio, anche se alcuni colleghi sostengano che le cellule impiantate ed il cervello ospite, al contrario dei collegamenti dei computer, siano plastici e possano fare nuovi tipi di connessioni funzionanti.

- Da quali zone provengono le cellule? Sono di un tipo specifico?

Le cellule da riprogrammare si chiamano fibroblasti e provengono da un piccolo prelievo cutaneo, ad esempio del braccio. Non c’è una zona particolare. In realtà non esiste neppure un tipo specifico di cellula che si presti meglio alla riprogrammazione: si possono riprogrammare anche cellule non della pelle, semplicemente i fibroblasti sono più abbondanti e crescono meglio, quindi se ne può avere un gran numero in coltura, velocemente. Questo è importante perché la riprogrammazione è un fenomeno altamente inefficiente e solo 1 cellula su mille viene riprogrammata attivando forzatamente i 4 geni scoperti da Shin’ya Yamanaka – insignito del premio Nobel 2012 assieme a John Gurdon). Quindi bisogna partire da molte cellule. Singole cellule riprogrammate poi, dividendosi una volta al giorno, possono riempire alcune piastre di coltura nel giro di poche settimane.

- Può quantificarci i tempi di produzione di cellule nervose specializzate?

Le cellule riprogrammate sono come quelle di un embrione poco dopo il suo impianto nell’utero: possono fare tutti i tessuti ed organi dell’organismo adulto. Nessuno sa ancora perché ma, in assenza di segnali chimici ben definiti, queste cellule tendono a diventare cellule nervose. Purtroppo il tempo non può essere accorciato e quindi bisogna aspettare tre mesi, quello che più o meno occorre ad un embrione umano per formare le prime cellule nervose di corteccia. Durante questi tre mesi noi dobbiamo controllare che i segnali chimici prodotti dalle stesse cellule in coltura non interferiscano con il loro differenziamento come cellule nervose della corteccia motoria, somministrando a tempi specifici certi segnali chimici.

- Che sinergia auspica si possa creare tra la sua ricerca e la ricerca clinica?

Auspico che i ricercatori medici clinici possano rapidamente recepire i dati generati dalle nostre ricerche, in special modo i risultati ottenuti trapiantando cellule nervose di topo, ed in futuro umane, nei topo di laboratorio con ictus. Spero che, sulla base delle nostre ricerche, possano rapidamente utilizzare le cellule nervose umane prodotte con i nostri protocolli in sperimentazione clinica con pazienti.

- La sua ricerca in Italia è sostenuta anche da privati? Se no, potrebbe esserlo?

La nostra ricerca, come la maggior parte della ricerca di base, è sostenuta solo da organismi pubblici. Tecnicamente può essere sostenuta anche da enti privati, tuttavia negli ultimi anni i bandi di ricerca finalizzata a ictus sono pressoché assenti in Italia.

- Ci sono i presupposti per lo sviluppo di una efficiente "filiera di ricerca" che parta dallo studio dell'istologia e dell'embriologia animale ed arrivi fino all' intervento chirurgico sull'uomo?

Penso che in Italia una filiera di ricerca che parte dallo studio dell'istologia e dell'embriologia animale ed arriva fino all' intervento chirurgico sull'uomo, passando attraverso lo studio dei meccanismi molecolari dei processi di sviluppo embrionale e di neurodegenerazione, esista già e sia ben strutturata in distinti centri di ricerca, universitari e non universitari (per esempio il CNR). Questa filiera però non è supportata da finanziamenti adeguati. Gli organismi governativi e privati infatti preferiscono finanziare un unico centro che racchiuda diverse competenze (l’istologo, il biologo cellulare, l’embriologo, il bioinformatico, il chimico, il medico clinico, il chirurgo). Nella pratica, centri di questo tipo esistono in Italia per lo studio e la cura dei tumori (ad esempio l’IFOM di Milano) ma non per lo studio delle malattie neurodegenerative. Personalmente, credo ancora molto nei vantaggi della de-localizzazione e della libertà ed indipendenza nella ricerca, soprattutto di base.

Un’equipe di ricerca della Binghamton University di New York è riuscita a realizzare le prime batterie alimentate da batteri capaci di produrre energia sfruttando una semplice goccia di saliva. Al momento si è riusciti a produrre una potenza limitata, sufficiente ad accendere un Led, ma in futuro potrebbero essere usate per alimentare biosensori utili a diagnosticare malattie in situazioni estreme, nei Paesi in via di sviluppo, dove non sono disponibili le tradizionali batterie. Gli esiti dello studio sono stati pubblicati sulla rivista Advanced Materials Technologies come evidenziato da Giovanni D'Agata, presidente dello “Sportello dei Diritti”, associazione da sempre attenta, fra le sue attività, alle nuove scoperte che potrebbero essere utilizzate per migliorare le condizioni di vita della cittadinanza. Il gruppo di ricerca è stato guidato da Seokheun Choi, già noto per aver ideato le prime batterie di carta. "La generazione di piccole quantità di energia su richiesta è utile soprattutto per le applicazioni diagnostiche nei Paesi in via di sviluppo", spiega Choi. "Tipicamente queste applicazioni richiedono solo poche decine di microwatt per pochi minuti, mentre le tradizionali batterie presenti in commercio sono troppo costose e sofisticate, senza contare poi il problema dell'inquinamento".Da qui, l'idea di sviluppare delle batterie di carta alimentate da batteri liofilizzati e inattivi, che possono essere risvegliati da una semplice goccia di saliva in modo da produrre energia nel giro di pochi minuti. Due i vantaggi di questa nuova tecnologia: innanzitutto l'attivazione con un fluido biologico (la saliva) che si può reperire in qualunque contesto anche estremo; poi il fatto che la liofilizzazione garantisce una conservazione a lungo termine, senza che le cellule batteriche finiscano per degradare o denaturarsi. "Ora la nostra densità di energia è di pochi microwatt per centimetro quadrato", precisa Choi. "Sebbene 16 celle a combustibile microbiche collegate in serie su un foglio di carta generino la corrente e il voltaggio necessari ad alimentare un Led - conclude l'esperto - serviranno ulteriori miglioramenti per altre applicazioni elettroniche che richiedono centinaia di milliwatt di energia". 

Per la prima volta, uomo e robot collaborano per il soccorso degli individui dispersi ad alta quota grazie ad un progetto coordinato dall’Università di Bologna e finanziato dall'Unione europea: si chiama SHERPA (Smart collaboration between Humans and ground-aErial Robots for imProving rescuing activities in Alpine environments) ed è un sistema a servizio dei soccorritori basato sull'uso di droni, robot, aereomodelli ad ala fissa.

 

Obiettivo di SHERPA è raggiungere luoghi oggetto di slavine in pochi minuti e localizzare i dispersi travolti dalla neve, mentre sistemi alternativi impiegano ore o sono addirittura inagibili in alcune situazioni. Il tutto salvaguardando anche i soccorritori stessi, grazie all'uso di robot nominati come animali: “falchi” (aeromodelli), “asini intelligenti” (rover) e “vespe” (droni). Elementi che compongono il progetto SHERPA, ideato da giovanissimi ricercatori europei guidati dal DEI (Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione) dell'Università di Bologna. 

 

Un'innovazione sociale nata da un progetto partecipato a livello europeo che mette la tecnologia al servizio dei soccorritori e che infatti ha trovato la collaborazione e l'interesse del Soccorso Alpino del CAI (Club Alpino Italiano) e dei Carabinieri. Un progetto scientifico mai così attuale e opportuno visto il grande numero di incidenti in alta quota causati dalla neve.

 

Adesso, dopo quattro anni di sviluppo, il progetto SHERPA è stato testato nella sua interezza durante l'Integration Week appena conclusa a Davos che ha visto la presenza di tutti i soggetti operativi guidati dal DEI di Bologna:l'Eth di Zurigo,l' Universita di Leuven in Belgio, l’Università di Napoli Federico II, l'Universita di Linkopings in Svezia, l' Universita di Twente in Svizzera, l' Universita di Bremen in Germania, quindi due aziende (la bluebotics di Losanna, specializzata in robotica, e l' Asia Tech di Bologna, specializzata in droni) e il Club Alpino Italiano come “end user” del progetto. Questo network di eccellenze europee ha creato contaminazione tra settori diversi per creare un prodotto originale e unico.

 

SHERPA è un sistema di droni da cielo e da terra in grado di lavorare in condizioni estreme: il suo obiettivo primario è la localizzazione esatta in pochissimo tempo di una persona sepolta fino a 3 metri sotto la neve. Questo sistema si articola sull'uso di tre elementi robotici: i “patrolling hawks” (falchi di pattuglia), gli aeromodelli che fanno il primo screening della zona colpita; gli “intelligent donkeys” (asini intelligenti), i rover che trasportano su terra i “trained wasps” (vespe allenate), ovvero i droni in grado di fotografare le aree colpite, riportare dati utili anche in condizioni avverse grazie alle telecamere ad infrarossi e registrare i segnali radio ARVA, cioè gli impulsi del segnalatore che ogni scalatore o sciatore esperto porta con sé.

È la prima volta che si combina un sistema di droni a supporto del soccorritore alpino, che rimane sempre il leader dell'azione: è lui quello che in SHERPA è chiamato il “Busy Genius” (genio occupato), ovvero colui che riceve un supporto tecnologico dalle macchine ma che rimane sempre il leader delle operazioni.

 

«L'integrazione uomo-robot in SHERPA è adattativa – spiega il prof. Lorenzo Marconi del DEI di Bologna, coordinatore del progetto SHERPA e del corso di studi in Ingegneria dell’Automazione dell’Università di Bologna – cioè quando l'uomo è presente, le macchine sono al suo servizio, viceversa quando il soccorritore è impegnato i robot agiscono in maniera autonoma. In che modo? Selezionando informazioni utili e quindi cercando di semplificare il lavoro dell'operatore: infatti, la guida dei droni viene fatta attraverso comandi gestuali e vocali e il sistema SHERPA è in grado di capire dal tono di voce e dal comportamento umano se in quel momento l'uomo è troppo impegnato o emotivamente stressato per guidare al meglio le operazioni. Qualora così fosse, SHERPA si regola di conseguenza, cercando di semplificare il lavoro umano. È importante infatti ricordare che il soccorritore è il “genio” e può sempre bypassare i robot: in SHERPA, l'uomo è sempre più in alto nella scala gerarchica».

 

Il progetto SHERPA nasce come risposta all'esigenza sociale di intervenire in modo più efficace nei soccorsi in alta quota. Infatti, la situazione dei dispersi per valanghe nell'arco alpino è sempre più drammatica: secondo il CAI, si è passati dai 1300 del 1955 ai circa 8mila del 2014. «Sono aumentati i frequentatori della montagna, soprattutto sciatori ed escursionisti. Così aumentano anche le persone a rischio, senza togliere il fatto che alcune calamità siano dovute al surriscaldamento globale», spiega Adriano Favre, Direttore del Soccorso Alpino Valdostano. 
 

Come alpinista, Favre ha scalato gran parte delle principali montagne al mondo e da oltre quarant'anni si occupa di soccorso: era presente con il suo team anche nelle recenti operazioni di ricerca dei superstiti all'Hotel Rigopiano in Abruzzo. «Il progetto SHERPA – continua – è un aiuto validissimo per la risoluzione ad un problema che nasce dalla domanda dei soccorritori: ottimizzare le ricerche dei dispersi. Siamo così più efficienti con meno persone: e i sistemi di localizzazione di SHERPA arrivano anche laddove non c’è copertura gps».

 

Inoltre, SHERPA è rapidissimo e invia in pochi minuti informazioni che normalmente richiedono ore: così, chi di solito morirebbe, vive. Perché una persona sepolta dalla neve può essere recuperata ancora in vita entro 30 minuti dal fatto ed entro 90 può presentare ancora funzioni vitali: ma è il reperimento entro i primi 15-20 minuti ad essere il più rilevante in termini di sopravvivenza. Per questo SHERPA fa la differenza in termini di efficacia rispetto alle tecnologie esistenti comparabili.

  1. Più visti
  2. Rilevanti
  3. Commenti

Per favorire una maggiore navigabilità del sito si fa uso di cookie, anche di terze parti. Scrollando, cliccando e navigando il sito si accettano tali cookie. LEGGI